Ei aivan alussa, mutta noin sekunti universumin luomisesta.
Lepton epochMaailmankaikkeuden massa on suurimmaksi osaksi leptoneita.
In physical cosmology, the lepton epoch was the period in the evolution of the early universe in which the leptons dominated the mass of the universe.
It started roughly 1 second after the Big Bang, after the majority of hadrons and anti-hadrons annihilated each other at the end of the hadron epoch.
During the lepton epoch the temperature of the universe was still high enough to create lepton/anti-lepton pairs, so leptons and anti-leptons were in thermal equilibrium.
Approximately 10 seconds after the Big Bang the temperature of the universe had fallen to the point where lepton/anti-lepton pairs were no longer created. Most leptons and anti-leptons were then eliminated in annihilation reactions, leaving a small residue of leptons.
The mass of the universe was then dominated by photons as it entered the following photon epoch.
wikipedia
Okay, very nice. Mutta mitä ovat leptonit?
Leptonit
En rupea amatöörinä vänkäämään omaa versiota tietokirjojen englannista, vaan annan asiantuntijoille taas puheenvuoron, etten tulkkaisi läpiä päähäni... Perushiukkasista olemme aiemmin hieman puhuneet, etenkin fotonista, ja tässä nyt lisää tietoa siitä, mitä alussa oli. blockquote>A lepton is an elementary, spin-1⁄2 particle that does not undergo strong interactions, but is subject to the Pauli exclusion principle.
[The Pauli exclusion principle is the quantum mechanical principle that two identical fermions (particles with half-integer spin) cannot occupy the same quantum state simultaneously. In the case of electrons, it can be stated as follows, It is impossible for two electrons of a poly-electron atom to have the same values of the four quantum numbers (n, ℓ, mℓ and ms). For two electrons residing in the same orbital, n, ℓ, and mℓ are the same, so ms must be different and the electrons have opposite spins. This principle was formulated by Austrian physicist Wolfgang Pauli in 1925.
wikipedia]
The best known of all leptons is the electron, which governs nearly all of chemistry as it is found in atoms and is directly tied to all chemical properties.
Two main classes of leptons exist: charged leptons (also known as the electron-like leptons), and neutral leptons (better known as neutrinos). Charged leptons can combine with other particles to form various composite particles such as atoms and positronium, while neutrinos rarely interact with anything, and are consequently rarely observed.
There are six types of leptons, known as flavours, forming three generations.
- The first generation is the electronic leptons, comprising the electron (e−) and electron neutrino (νe);
- the second is the muonic leptons, comprising the muon (μ−) and muon neutrino (νμ);
- and the third is the tauonic leptons, comprising the tau (τ−) and the tau neutrino (ντ).
Electrons have the least mass of all the charged leptons.
The heavier muons and taus will rapidly change into electrons through a process of particle decay: the transformation from a higher mass state to a lower mass state.
Thus electrons are stable and the most common charged lepton in the universe, whereas muons and taus can only be produced in high energy collisions (such as those involving cosmic rays and those carried out in particle accelerators).
Leptons have various intrinsic properties, including electric charge, spin, and mass.
Unlike quarks however, leptons are not subject to the strong interaction, but they are subject to the other three fundamental interactions: gravitation, electromagnetism (excluding neutrinos, which are electrically neutral), and the weak interaction.
For every lepton flavor there is a corresponding type of antiparticle, known as antilepton, that differs from the lepton only in that some of its properties have equal magnitude but opposite sign.
However, according to certain theories, neutrinos may be their own antiparticle, but it is not currently known whether this is the case or not.
lue koko artikkeli wikipediasta
Suositelluissa lsivuissa (oikealla) on linkki Particle Adventure sivuille, joissa leptoneita selvitetään hiukka senselkeämmin kuin tässä tietosanakirjan antamassa leptonien ominaisuuksian listauksessa.
Tärkeinä kosmologian tietoina saamme tästä oppia, että ELEKTRONI on negatiivisesti varautunut vakaa perushiukkanen, leptoni, joka on koko maailmankaikkeuden kannalta äärimmäisen keskeinen ja tärkeä.
Niin se vaan maasta ponnistaa, pikkarainen negatiivinen hiukkanenkin!
Opimme myös, että moderni tiede ei varsin paljon tiedä, miksi NEUTRONIT eli varauksettomat leptonit, ovat olemassa, kun ne kovin itsenäisiä ovat eivätkä oikein mihinkään ota kantaa eivätkä osaa. Varmaan tulevaisuudessa osoittautuu, että Luojan älykkäästi tekemässä kosmoksessa niilläkin on jokin olennainen rooli, eivät vain huvikseen puhko planeettoja ja ihmisiä ilman, että niitä edes aisteillamme mitenkään havaitsemme.
Onko siis elektroni ennen fotonia?
Ei kommentteja:
Lähetä kommentti